Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Microorganisms ; 11(5)2023 May 05.
Article in English | MEDLINE | ID: covidwho-20233115

ABSTRACT

To date, much discussion has been had on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung infection associated with COVID-19 onset, of which the major manifestation is characterized by a "cytokine storm" [...].

2.
Hum Immunol ; 84(8): 384-392, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2251762

ABSTRACT

Human Leukocyte Antigens (HLA) are classified in three different classes I, II and III, and represent the key mediators of immune responses, self-tolerance development and pathogen recognition. Among them, non-classical subtypes (HLA-Ib), e.g. HLA-E and HLA-G, are characterize by tolerogenic functions that are often exploited by viruses to evade the host immune responses. In this perspective, we will review the main current data referred to HLA-G and HLA-E and viral infections, as well as the impact on immune response. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane library) for a systematic search until November 2022 using MeSH keywords/terms (i.e. HLA, HLA-G, HLA-E, viral infection, SARS-CoV-2, etc.…). Recent studies support the involvement of non-classical molecules, such as HLA-E and HLA-G, in the control of viral infection. On one side, viruses exploit HLA-G and HLA-E molecule to control host immune activation. On the other side, the expression of these molecules might control the inflammatory condition generated by viral infections. Hence, this review has the aim to summarize the state of art of literature about the modulation of these non-classical HLA-I molecules, to provide a general overview of the new strategies of viral immune system regulation to counteract immune defenses.


Subject(s)
COVID-19 , Virus Diseases , Humans , HLA-G Antigens , SARS-CoV-2 , Histocompatibility Antigens Class I , HLA Antigens/genetics
3.
Front Endocrinol (Lausanne) ; 13: 1035482, 2022.
Article in English | MEDLINE | ID: covidwho-2224761

ABSTRACT

A 50-year-old man was admitted to our hospital for vomit, nausea, diplopia, and headache resistant to analgesic drugs. Symptoms started the day after his third COVID-19 mRNA vaccine (Moderna) whereas SARS-CoV-2 nasal swab was negative. Pituitary MRI showed recent bleeding in macroadenoma, consistent with pituitary apoplexy. Adverse Drug Reaction was reported to AIFA (Italian Medicines Agency).A stress dexamethasone dose was administered due to the risk of adrenal insufficiency and to reduce oedema. Biochemistry showed secondary hypogonadism; inflammatory markers were elevated as well as white blood cells count, fibrinogen and D-dimer. Pituitary tumour transsphenoidal resection was performed and pathology report was consistent with pituitary adenoma with focal haemorrhage and necrosis; we found immunohistochemical evidence for SARS-CoV-2 proteins next to pituitary capillaries, in the presence of an evident lymphocyte infiltrate.Few cases of pituitary apoplexy after COVID-19 vaccination and infection have been reported. Several hypotheses have been suggested to explain this clinical picture, including cross-reactivity between SARS-CoV-2 and pituitary proteins, COVID-19-associated coagulopathy, infection-driven acutely increased pituitary blood demand, anti-Platelet Factor 4/heparin antibodies development after vaccine administration. Ours is the first case of SARS-CoV-2 evidence in pituitary tissue, suggesting that endothelial infection of pituitary capillaries could be present before vaccination, possibly due to a previous asymptomatic SARS-CoV-2 infection. Our case underlines that SARS-CoV-2 can associate with apoplexy by penetrating the central nervous system, even in cases of negative nasal swab. Patients with pituitary tumours may develop pituitary apoplexy after exposure to SARS-CoV-2, therefore clinicians should be aware of this risk.


Subject(s)
COVID-19 , Pituitary Apoplexy , Pituitary Neoplasms , Male , Humans , Middle Aged , Pituitary Apoplexy/etiology , COVID-19 Vaccines/adverse effects , COVID-19/complications , SARS-CoV-2 , Vaccination
4.
Placenta ; 132: 38-43, 2023 02.
Article in English | MEDLINE | ID: covidwho-2165764

ABSTRACT

INTRODUCTION: Recent studies reported a differential expression of both ACE2 and CD147 in pregnant women associated to SARS-CoV-2 placental infection. The aim of this study is to further investigate the placental SARS-CoV-2 infection and the potential effect on protein expression (ACE2, CD147, HLA-G and CD56). METHODS: The study was on three subgroups: i) 18 subjects positive for SARS-CoV-2 swab at delivery; ii) 9 subjects that had a positive SARS-CoV-2 swab during pregnancy but resulted negative at delivery; iii) 11 control subjects with physiological pregnancy and with no previous or concomitant SARS-CoV-2 swab positivity. None of the subjects were vaccinated for SARS-CoV-2 infection. The placenta samples were analyzed for SARS-CoV-2 NP (Nucleocapsid protein) positivity and the expression of ACE2, CD147, HLA-G and CD56. RESULTS: We observed a higher percentage of SARS-CoV-2 NP positive placenta samples in the group of SARS-CoV-2 PCR positive at delivery in comparison with SARS-CoV-2 PCR negative at delivery. The localization of SARS-CoV-2 NP positivity in placenta samples was mainly in syncytiotrophoblast (ST) of SARS-CoV-2 PCR positive at delivery group and in extra-villous trophoblast (EVT) of SARS-CoV-2 PCR negative at delivery group. CD147, HLA-G positivity was higher in ST of SARS-CoV-2 PCR positive at delivery group, while CD56-expressing immune cells were decreased in comparison with control subjects. DISCUSSION: We confirmed the ability of SARS-CoV-2 to infect placenta tissues. The simultaneous SARS-CoV-2 swab positivity at delivery and the positivity of the placenta tissue for SARS-CoV-2 NP seems to create an environment that modifies the expression of specific molecules, as CD147 and HLA-G. These data suggest a possible impact of SARS-CoV-2 infection during pregnancy, that might be worthy to be monitored also in vaccinated subjects.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Female , Humans , Pregnancy , Angiotensin-Converting Enzyme 2/metabolism , HLA-G Antigens/metabolism , Placenta/metabolism , Pregnancy Complications, Infectious/metabolism , SARS-CoV-2
5.
Frontiers in endocrinology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2147051

ABSTRACT

A 50-year-old man was admitted to our hospital for vomit, nausea, diplopia, and headache resistant to analgesic drugs. Symptoms started the day after his third COVID-19 mRNA vaccine (Moderna) whereas SARS-CoV-2 nasal swab was negative. Pituitary MRI showed recent bleeding in macroadenoma, consistent with pituitary apoplexy. Adverse Drug Reaction was reported to AIFA (Italian Medicines Agency).A stress dexamethasone dose was administered due to the risk of adrenal insufficiency and to reduce oedema. Biochemistry showed secondary hypogonadism;inflammatory markers were elevated as well as white blood cells count, fibrinogen and D-dimer. Pituitary tumour transsphenoidal resection was performed and pathology report was consistent with pituitary adenoma with focal haemorrhage and necrosis;we found immunohistochemical evidence for SARS-CoV-2 proteins next to pituitary capillaries, in the presence of an evident lymphocyte infiltrate.Few cases of pituitary apoplexy after COVID-19 vaccination and infection have been reported. Several hypotheses have been suggested to explain this clinical picture, including cross-reactivity between SARS-CoV-2 and pituitary proteins, COVID-19-associated coagulopathy, infection-driven acutely increased pituitary blood demand, anti-Platelet Factor 4/heparin antibodies development after vaccine administration. Ours is the first case of SARS-CoV-2 evidence in pituitary tissue, suggesting that endothelial infection of pituitary capillaries could be present before vaccination, possibly due to a previous asymptomatic SARS-CoV-2 infection. Our case underlines that SARS-CoV-2 can associate with apoplexy by penetrating the central nervous system, even in cases of negative nasal swab. Patients with pituitary tumours may develop pituitary apoplexy after exposure to SARS-CoV-2, therefore clinicians should be aware of this risk.

6.
Int J Infect Dis ; 122: 412-414, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1895083

ABSTRACT

Vaccines against SARS-CoV-2 ameliorate infection and adverse outcomes from SARS-CoV-2. Elicitation of high affinity and durable protective antibody responses is a hallmark of a successful humoral immune response to vaccination. To assess the relevance of serum levels of SARS-CoV-2 specific antibodies and to further characterize the immune response to SARS-CoV-2 vaccines, we report i) the levels of spike-binding and neutralizing antibodies to SARS-COV-2 in the sera of 30 healthy volunteers at nine months after the second vaccination dose of mRNA vaccine and one month after the booster dose; ii) the levels of IFN-γ production by blood T cells exposed to SARS-CoV-2 spike antigen (Wuhan, Alpha B.1.1.7, Delta B.1.617.2, and Omicron B1.1.529 variants); and iii) the specific phenotype of T cells related with exposure to SARS-CoV-2 spike antigen. We observed that the booster dose induced increased humoral and adaptive immune responses and led to early activation of the memory CD8+ T subset.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
7.
Microorganisms ; 10(3)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1701359

ABSTRACT

An efficient host immune response is crucial in controlling viral infections. Despite most studies focused on the implication of T and B cell response in COVID-19 (Corona Virus Disease-19) patients or in their activation after vaccination against SARS-CoV-2, host innate immune response has raised even more interest as well. In fact, innate immunity, including Natural Killer (NK) cells, monocytes/macrophages and neutrophils, represent the first line of defense against the virus and it is essential to determine the correct activation of an efficient and specific acquired immune response. In this perspective, we will report an overview on the main findings concerning SARS-CoV-2 interaction with innate host immune system, in correlation with pathogenesis and viral immune escape mechanisms.

8.
FASEB J ; 35(12): e21969, 2021 12.
Article in English | MEDLINE | ID: covidwho-1532548

ABSTRACT

Several evidence suggests that, in addition to the respiratory tract, also the gastrointestinal tract is a main site of severe acute respiratory syndrome CoronaVirus 2 (SARS-CoV-2) infection, as an example of a multi-organ vascular damage, likely associated with poor prognosis. To assess mechanisms SARS-CoV-2 responsible of tissue infection and vascular injury, correlating with thrombotic damage, specimens of the digestive tract positive for SARS-CoV-2 nucleocapsid protein were analyzed deriving from three patients, negative to naso-oro-pharyngeal swab for SARS-CoV-2. These COVID-19-negative patients came to clinical observation due to urgent abdominal surgery that removed different sections of the digestive tract after thrombotic events. Immunohistochemical for the expression of SARS-CoV-2 combined with a panel of SARS-CoV-2 related proteins angiotensin-converting enzyme 2 receptor, cluster of differentiation 147 (CD147), human leukocyte antigen-G (HLA-G), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 was performed. Tissue samples were also evaluated by electron microscopy for ultrastructural virus localization and cell characterization. The damage of the tissue was assessed by ultrastructural analysis. It has been observed that CD147 expression levels correlate with SARS-CoV-2 infection extent, vascular damage and an increased expression of VEGF and thrombosis. The confirmation of CD147 co-localization with SARS-CoV-2 Spike protein binding on gastrointestinal tissues and the reduction of the infection level in intestinal epithelial cells after CD147 neutralization, suggest CD147 as a possible key factor for viral susceptibility of gastrointestinal tissue. The presence of SARS-CoV-2 infection of gastrointestinal tissue might be consequently implicated in abdominal thrombosis, where VEGF might mediate the vascular damage.


Subject(s)
Basigin/metabolism , COVID-19/complications , Digestive System Diseases/pathology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Thrombosis/pathology , Vascular Endothelial Growth Factor A/metabolism , Aged , Basigin/genetics , COVID-19/virology , Digestive System Diseases/genetics , Digestive System Diseases/metabolism , Digestive System Diseases/virology , Female , Humans , Male , Middle Aged , Prognosis , Spike Glycoprotein, Coronavirus/genetics , Thrombosis/genetics , Thrombosis/metabolism , Thrombosis/virology , Vascular Endothelial Growth Factor A/genetics
9.
ACS Appl Mater Interfaces ; 13(46): 54648-54655, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1505998

ABSTRACT

The main route of the transmission of the SARS-CoV-2 virus is through airborne small aerosol particles containing viable virus as well as through droplets transmitted between people within close proximity. Transmission via contaminated surfaces has also been recognized as an important route for the spread of SARS-CoV-2 coronavirus. Among a variety of antimicrobial agents currently in use, polymers represent a class of biocides that have become increasingly important as an alternative to existing biocidal approaches. Two transparent polymeric compounds, containing silver and benzalkonium ions electrostatically bound to a polystyrene sulfonate backbone, were synthesized, through simple procedures, and evaluated for their antimicrobial properties against Gram-positive and Gram-negative bacteria and Candida albicans (ISO EN 1276) and for their antiviral activity toward 229E and SARS-CoV-2 coronaviruses (ISO UNI EN 14476:2019). The results showed that the two tested formulations are able to inhibit the growth of (1.5-5.5) × 1011 CFU of Gram-positive bacteria, Gram-negative bacteria, and of the fungal species Candida albicans. Both compounds were able to control the 229E and SARS-CoV-2 infection of a target cell in a time contact of 5 min, with a virucidal effect from 24 to 72 h postinfection, according to the European Medicines Agency (EMA) guidelines, where a product is considered virucidal upon achieving a reduction of 4 logarithms. This study observed a decrease of more than 5 logarithms, which implies that these formulations are likely ideal candidates for the realization of transparent surface coatings that are capable of maintaining remarkable antibacterial activity and SARS-CoV-2 antiviral properties over time.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Polymers/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , COVID-19/virology , Cell Line , Humans , Microbial Sensitivity Tests , SARS-CoV-2/isolation & purification
10.
Viruses ; 13(9)2021 09 17.
Article in English | MEDLINE | ID: covidwho-1430976

ABSTRACT

Human leukocyte antigen (HLA) is a group of molecules involved in inflammatory and infective responses. We evaluated blood sHLA-E and sHLA-G levels in hospitalized COVID-19 patients with respiratory failure and their relationship with clinical evolution, changes in endothelial activation biomarker profile, and neutrophil adhesion. sHLA-E, sHLA-G, and endothelial activation biomarkers were quantified by ELISA assay in plasma samples. Neutrophil adhesion to endothelium was assessed in the presence/absence of patients' plasma samples. At admission, plasma levels of sHLA-G and sHLA-E were significantly higher in COVID-19 patients with respiratory failure compared to controls. COVID-19 clinical improvement was associated with increased sHLA-G plasma levels. In COVID-19, but not in control patients, an inverse correlation was found between serum sICAM-1 and E-selectin levels and plasma sHLA-G values. The in vitro analysis of activated endothelial cells confirmed the ability of HLA-G molecules to control sICAM-1 and sE-selectin expression via CD160 interaction and FGF2 induction and consequently neutrophil adhesion. We suggest a potential role for sHLA-G in improving COVID-19 patients' clinical condition related to the control of neutrophil adhesion to activated endothelium.


Subject(s)
Biomarkers , COVID-19/immunology , COVID-19/virology , HLA-G Antigens/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Aged , Alleles , COVID-19/epidemiology , Cell Adhesion/immunology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Gene Frequency , HLA-G Antigens/blood , Humans , Male , Middle Aged , Models, Biological , Neutrophils/metabolism
11.
Microorganisms ; 9(9)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374466

ABSTRACT

(1) Background: Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent for the coronavirus disease (COVID-19) that has led to a pandemic that began in March 2020. The role of the SARS-CoV-2 components on innate and adaptive immunity is still unknown. We investigated the possible implication of pathogen-associated molecular patterns (PAMPs)-pattern recognition receptors (PRRs) interaction. (2) Methods: We infected Calu-3/MRC-5 multicellular spheroids (MTCSs) with a SARS-CoV-2 clinical strain and evaluated the activation of RNA sensors, transcription factors, and cytokines/interferons (IFN) secretion, by quantitative real-time PCR, immunofluorescence, and ELISA. (3) Results: Our results showed that the SARS-CoV-2 infection of Calu-3/MRC-5 multicellular spheroids induced the activation of the TLR3 and TLR7 RNA sensor pathways. In particular, TLR3 might act via IRF3, producing interleukin (IL)-1α, IL-1ß, IL-4, IL-6, and IFN-α and IFN-ß, during the first 24 h post-infection. Then, TLR3 activates the NFκB transduction pathway, leading to pro-inflammatory cytokine secretion. Conversely, TLR7 seems to mainly act via NFκB, inducing type 1 IFN, IFN-γ, and IFN-λ3, starting from the 48 h post-infection. (4) Conclusion: We showed that both TLR3 and TLR7 are involved in the control of innate immunity during lung SARS-CoV-2 infection. The activation of TLRs induced pro-inflammatory cytokines, such as IL-1α, IL-1ß, IL-4, and IL-6, as well as interferons. TLRs could be a potential target in controlling the infection in the early stages of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL